Multi-camera Simultaneous Localization and Mapping
نویسندگان
چکیده
BRIAN SANDERSON CLIPP: Multi-Camera Simultaneous Localization and Mapping (Under the direction of Marc Pollefeys and Jan-Michael Frahm) In this thesis, we study two aspects of simultaneous localization and mapping (SLAM) for multi-camera systems: minimal solution methods for the scaled motion of non-overlapping and partially overlapping two camera systems and enabling online, real-time mapping of large areas using the parallelism inherent in the visual simultaneous localization and mapping (VSLAM) problem. We present the only existing minimal solution method for six degree of freedom structure and motion estimation using a non-overlapping, rigid two camera system with known intrinsic and extrinsic calibration. One example application of our method is the threedimensional reconstruction of urban scenes from video. Because our method does not require the cameras’ fields-of-view to overlap, we are able to maximize coverage of the scene and avoid processing redundant, overlapping imagery. Additionally, we developed a minimal solution method for partially overlapping stereo camera systems to overcome degeneracies inherent to non-overlapping two-camera systems but still have a wide total field of view. The method takes two stereo images as its input. It uses one feature visible in all four views and three features visible across two temporal view pairs to constrain the system camera’s motion. We show in synthetic experiments that our method creates rotation and translation estimates that are more accurate than the perspective three-point method as the overlap in the stereo camera’s fields-of-view is reduced. A final part of this thesis is the development of an online, real-time visual SLAM system that achieves real-time speed by exploiting the parallelism inherent in the VSLAM
منابع مشابه
Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملEffects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملVisual SLAM with a Multi-Camera Rig
Camera-based simultaneous localization and mapping or visual SLAM has received much attention recently. Typically single cameras, multiple cameras in a stereo setup or omni-directional cameras are used. We propose a different approach, where multiple cameras can be mounted on a robot in an arbitrary configuration. Allowing the cameras to face in different directions yields better constraints th...
متن کاملAn Integrated Approach to Multi-Robot Exploration of an Unknown Space
This work focuses mainly on the practical aspects of the multi-robot exploration of an unknown space. Each robot is equipped with an RGB-D camera and builds a 3D model of its neighbourhood. The team of robots is controlled by a centralized exploration approach using a 2D polygonal map of the environment. This work follows and extends the Exploration algorithms in a polygonal domain thesis by T....
متن کاملLaFiDa - A Laserscanner Multi-Fisheye Camera Dataset
In this article, the Laserscanner Multi-Fisheye Camera Dataset (LaFiDa) for applying benchmarks is presented. A head-mounted multi-fisheye camera system combined with a mobile laserscanner was utilized to capture the benchmark datasets. Besides this, accurate six degrees of freedom (6 DoF) ground truth poses were obtained from a motion capture system with a sampling rate of 360 Hz. Multiple seq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010